Project Name: Preliminary Assessment and Survey of Land Degradation in the Dalrypmle Shire, QLD

Project Code: DLR Site ID: 117 Observation ID: 1

Agency Name: QLD Department of Primary Industries

Site Information

Desc. By: M. DeCorte Locality:

Date Desc.: 23/08/90 Elevation: 500 metres Sheet No.: 7860 GPS Map Ref.: Rainfall: No Data Northing/Long.: 7930553 AMG zone: 55 Runoff: No runoff 262573 Datum: AGD66 Well drained Easting/Lat.: Drainage:

Geology

ExposureType: No Data Conf. Sub. is Parent. Mat.: No Data

Geol. Ref.: No Data Substrate Material: Undisturbed soil core, Basalt

Land Form

Rel/Slope Class:Level plain <9m <1%</th>Pattern Type:PlainMorph. Type:FlatRelief:No DataElem. Type:PlainSlope Category:LevelSlope:1 %Aspect:300 degrees

Surface Soil Condition (dry): Hardsetting

Erosion:

Soil Classification

Australian Soil Classification:Mapping Unit:N/AHaplic Eutrophic Red Ferrosol Thin Non-gravelly Clay-loamyPrincipal Profile Form:Gn3.12

Clayey Shallow

ASC Confidence: Great Soil Group: Euchrozem

Analytical data are incomplete but reasonable confidence.

<u>Site Disturbance:</u> No effective disturbance other than grazing by hoofed animals

Vegetation: Low Strata - Tussock grass, 0.26-0.5m, Mid-dense. *Species includes - Heteropogon contortus, Chrysopogon

fallax,

Phynchelytrum repens Mid Strata - , , . *Species includes - None recorded

Tall Strata - Tree, 6.01-12m, Very sparse. *Species includes - Eucalyptus crebra, Eucalyptus papuana

Surface Coarse Fragments: No surface coarse fragments

Profile Morphology

A1 0 - 0.05 m Dark brown (7.5YR3/4-Moist); ; Clay loam; Strong grade of structure, 2-5 mm, Polyhedral;

Smooth-ped fabric; Dry; Very weak consistence; , Calcareous, , ; , Gypseous, , ; Field pH 6

(Raupach, 0.05); Many, fine (1-2mm) roots; Clear, Smooth change to -

B2 0.05 - 0.2 m Dark reddish brown (5YR3/3-Moist); ; Light clay; Strong grade of structure, 2-5 mm, Polyhedral;

Smooth-ped fabric; Dry; Firm consistence; , Calcareous, , ; , Gypseous, , ; Field pH 7 (Raupach,

0.2); Common, very fine (0-1mm) roots;

Morphological Notes

Observation Notes

Site Notes

Preliminary Assessment and Survey of Land Degradation in the Dalrypmle Shire, QLD DLR Site ID: 117 Observation ID: 1

DLR Site ID: 117
QLD Department of Primary Industries

Project Name: Project Code: Agency Name:

Laboratory Test Results:

Date to the second of the seco												
Depth	рН	1:5 EC		nangeable	Cations K		xchangeable	CEC		ECEC	;	ESP
m		dS/m	Ca i	Иg	N.	Na Cmol (+)/	Acidity kg					%
0 - 0.05 0.05 - 0.2	6.5A 6.5A		8.3B	4.1	1	0.06						
Depth	CaCO3	Organic C	Avail. P	Total P	Total N	Total K	Bulk Density	Pa GV	article CS	Size FS	Analysi	s Clay
m	%	%	mg/kg	%	%	%	Mg/m3	GV	CG	%	Siit	Clay
0 - 0.05 0.05 - 0.2												
Depth	COLE		Gravimetric/Volumetric Water Contents						K sat		K unsa	at
m		Sat.	0.05 Bar	0.1 Bar g/ <u>ç</u>	0.5 Bar g - m3/m	1 Bar 3	5 Bar 15	Bar	mn	n/h	mm/h	1
0 - 0.05 0.05 - 0.2												

Project Name: Preliminary Assessment and Survey of Land Degradation in the Dalrypmle Shire, QLD

Project Code: Site ID: 117 Observation ID: 1

Agency Name: QLD Department of Primary Industries

Laboratory Analyses Completed for this profile

10B

Extractable sulfur(mg/kg) - Phosphate extractable sulfur Exchangeable bases (Ca2+,Mg2+,Na+,K+) - 1M ammonium chloride at pH 7.0, pretreatment for 15A2_CA

soluble salts

15A2_K Exchangeable bases- 1M ammonium chloride at pH 7.0, pretreatment for soluble salts Exchangeable bases- 1M ammonium chloride at pH 7.0, pretreatment for soluble salts 15A2_MG 15A2_NA Exchangeable bases- 1M ammonium chloride at pH 7.0, pretreatment for soluble salts

Exchangeable sodium percentage (ESP) 15N1

pH of 1:5 soil/water suspension 4A1